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ABSTRACT

Climate models still have deficits in reproducing the surface energy and momentum budgets in Arctic

regions. One of the reasons is that currently used transfer coefficients occurring in parameterizations of the

turbulent fluxes are based on stability functions derived from measurements over land and not over sea ice.

An improved parameterization is developed using the Monin–Obukhov similarity theory (MOST) and corre-

sponding stability functions that reproducemeasurements over sea ice obtained during the SurfaceHeat Budget

of the Arctic Ocean (SHEBA) campaign. The new stability functions for the stable surface layer represent a

modificationof earlier ones also based onSHEBAmeasurements. It is shown that the new functions are superior

to the former ones with respect to the representation of the measured relationship between theMOST stability

parameter and the bulk Richardson number. Nevertheless, the functions fulfill the same criteria of applicability

as the earlier functions and contain, as an extension, a dependence on the neutral-limit turbulent Prandtl

number. Applying the new functions we develop an efficient noniterative parameterization of the near-surface

turbulent fluxes of momentum and heat with transfer coefficients as a function of the bulk Richardson number

(Rib) and roughness parameters. A hierarchy of transfer coefficients is recommended for weather and climate

models. They agree better with SHEBAdata for strong stability (Rib. 0.1) than previous parameterizations and

they agree well with those based on the Businger–Dyer functions in the range Rib # 0.1.

1. Introduction

The atmospheric boundary layer is often stably

stratified. This holds especially for polar regions but

also for other regions on Earth where stable stratifi-

cation is a very common feature, e.g., during night.

However, turbulent processes in the stable boundary

layer (SBL) are still poorly represented in climate

and weather prediction models. In this work we study

such processes with a focus on the parameterization of

the turbulent surface-layer fluxes in the SBL. One of the

key questions is if an improvement of the parameteri-

zation of bulk transfer coefficients for momentum, heat

and other scalars is possible. Any progress would help to

gain a more realistic treatment of the SBL in models.
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In the past, large efforts were invested in measure-

ments of the SBL fluxes. For Arctic ocean conditions,

fluxes became available, e.g., from data of the Surface

Heat Budget of the Arctic Ocean (SHEBA) campaign

(Uttal et al. 2002) representing measurements over

about 1 year. They were obtained from sonic anemom-

eters installed at a 20m tower in five levels (Andreas

et al. 1999; Uttal et al. 2002; Grachev et al. 2007a,

hereafter G2007a). Due to the high quality of the data

and since they were collected over polar oceans with

frequent stable conditions, they represent an excellent

dataset for developing stability functions for the SBL in

the framework of theMonin–Obukhov similarity theory

(MOST). Such functions were derived by G2007a.

During the pre-SHEBA epoch Andreas (2002) rec-

ommended the stability functions of Holtslag and De

Bruin (1988) for use in very stable conditions in polar

regions. However, the latter stability functions do not

allow persistence of turbulence at a bulk Richardson

number Rib $ 0.43 [see definition of Rib in Eq. (22)].

This is in contradiction to results of the more recent

field measurements during SHEBA and to many earlier

empirical data. Based on the SHEBA data Grachev et al.

(2013) showed that turbulent flow can prevail also when

the critical Richardson number, defined as a threshold for

the change from a Kolmogorov to a non-Kolmogorov

regime, is exceeded by far (see also section 4). They

observed turbulence for large values of up to 100 of the

stability parameter z5 z/L, whereL is theObukhov length

[see definition in Eq. (1) in section 2]. This corresponds

to a bulk Richardson number Rib up to 0.7–1.0.

Each of the available stability functions has its own

region of applicability (confidence range, see section 4).

However, the advantage of the G2007a functions is that

they are valid for the widest stability range 0 # z , 100

for which data are nowadays available. It covers the

near-neutral limit of 0 # z , 0.02, the weakly stable

range 0.02# z , 0.6, the very stable range 0.6# z , 50,

and the extremely stable range z$ 50 (G2007a; Sorbjan

and Grachev 2010). For the very stable and extremely

stable ranges only the functions of G2007a are available.

Recently, Srivastava et al. (2020) showed that the func-

tional form of the G2007a approach is well applicable also

over land and results agree after adjustment of constants

betterwith observations obtained over an Indian land site

than previous functions. Thus, the SHEBA results might

have a more general meaning than expected.

However, studies applying the above-mentioned

SHEBA based field observations and theoretical find-

ings to weather prediction and climate models are still

missing. One can ask the question, Why have not the

stability functions of G2007a with their obvious advan-

tages been implemented (with exception ofAndreas et al.

2010a,b) in suchmodels or in further parameterizations in

the decade since their discovery? The answer consists

probably in the general recognition that the application of

the G2007a functions results in weaker turbulence in the

range 0.1 , Rib , 0.2 compared with the application of

other functions. Thus, their use in models introduces an

undesirable decrease of turbulent mixing, so that it does

not help to solve the well known problems of nocturnal

boundary layer decoupling over land (Louis 1979) and

of a too weak life cycle of atmospheric cyclones in polar

regions (Jung et al. 2016; Vihma et al. 2014). On the

contrary, the use of the G2007a functions would make

the solution of these problems even more difficult.

Indeed, the functions of G2007a provide almost the

lowest surface fluxes in the above mentioned stability

range from all currently known empirical nonlinear

stability functions, including the functions of Holtslag

and De Bruin (1988), Beljaars and Holtslag (1991),

and of Chenge and Brutsaert (2005). To the best of

our knowledge, smaller fluxes are provided only by the

empirical functions of Businger–Dyer (Businger et al. 1971;

Dyer 1974), and by theoretically derived stability func-

tions of Sukoriansky (2008), which are based on the quasi-

normal scale elimination (QNSE) theory of stratified

turbulence (Sukoriansky 2008, and references therein).

Thus, the straightforward implementation of the

G2007a functions will definitely cause difficulties since

other parameters need to be tuned to compensate for

the reduction of surface-layer mixing. However, the im-

plementation can be desirable from another point of view.

For example, reduced turbulent mixing in the SBL can help

to avoid an often occurring overestimation of the boundary

layer height. This problem was documented in simulations

by Delage (1997) and later by Sandu et al. (2013).

Assuming that the functions of G2007a are universally

applicable and that they correctly represent the main

physics of turbulent mixing in stably stratified flows, one

can use them in models independent on the location for

all regions of Earth when the prerequisites of MOST are

fulfilled. Consequent model biases in the momentum

and heat budgets should be related to other physical

mechanisms of ice–atmosphere interaction than the

turbulent mixing represented by the stability functions.

Such mechanisms are, e.g., form drag, gravity wave gen-

eration, and radiative-cooling-generated mixing. These

factors can have probably large impact on turbulent

fluxes, but we do not consider them in this work. One

can draw the clear conclusion that the implementation

and at least testing of the G2007a stability functions in

climate and weather predictions models is very desirable.

There are several strategies for the implementation of

new parameterizations. One strategy has been repeatedly

announced by several authors, e.g., Jung et al. (2016),
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Vihma et al. (2014), and Mauritsen (2011). It states

that a single representative pair of stability functions is

universally applicable for stable stratification (z . 0)

only dependent on land or ocean but without any other

dependence on location. A complementary strategy

would be to account additionally for the stability over

polar sea ice (Jiménez et al. 2012). However, to the best

of our knowledge, even such a compromise version ap-

plying the G2007a functions over sea ice has not yet

been realized. As a third strategy (see Gryanik and

Lüpkes 2018) it is worth testing the stability functions

of G2007a everywhere thus also in other regions than

over polar sea ice. This strategy is supported by the

recent work of Srivastava et al. (2020) (see above)

showing the applicability of the G2007a functions also

over land.

For the implementation of the stability functions in

contemporary weather prediction and climate models

the derivation of normalized transfer coefficients fm and

fh and transfer coefficientsCd andCh is required because

these coefficients are the main ingredients of surface-

layer schemes in the models. For practical applications

noniterative parameterizations of the transfer coefficients

are preferable. Often, the derivation of noniterative pa-

rameterizations of the transfer coefficients is based on

MOST. This approach goes back to a method proposed

by Deardorff (1968) adjusted later by Paulson (1969) and

Louis (1979) for practical use in weather prediction and

climate models. Recently, Gryanik and Lüpkes (2018)

have further developed this method and applied it to the

stability functions of G2007a.

The approach requires solving the governing MOST

equation [defined later in Eq. (21)] for the stability pa-

rameter z in terms of the bulk Richardson number Rib
and roughness parameters «m5 z/z0 for momentum and

«t 5 z/zt for heat. However, as we will show, the G2007a

functions do not approximate the observed stability

parameter–bulk Richardson number relationship well

especially for Rib , 0.1 and lead to an overestimation of

drag coefficients in the range Rib . 0.2. This finding

motivated us to search for new stability functions,

which are able to represent both the observed flux–

nondimensional gradient relationship and the z–Rib
relationship simultaneously and additionally allow the

approximation of stability dependent transfer coeffi-

cients for heat and momentum with better agreement to

measurements.

Moreover, it is difficult to implement the stability

functions of G2007a in weather prediction and climate

models due to another, more technical reason. Namely,

the functions are rather cumbersome. For example, they

are inconvenient for numerical iterative algorithms [five

iterations are typically necessary for the algorithm of

Andreas et al. (2010b)]. And their use is inconvenient to

establish semianalytical methods for the parameterization

of bulk transfer coefficients (Gryanik and Lüpkes 2018).
Also the analytical formulation, e.g., of applicability

criteria for the stability functions, is complicated when

these functions are used (Sharan and Kumar 2010). The

complex functional form of the stability functions com-

plicates the qualitative interpretation of results based on

physical characteristics of turbulence, such as mixing

lengths and eddy diffusivities.

For these reasons a further goal of this study is to

suggest new stability functions, which have a simpler

functional form than the G2007a functions. Furthermore,

we adjust the method proposed by Gryanik and Lüpkes
(2018) for a noniterative scheme to these new functions.

To summarize, the main goals of our research are a

modification and extension of the stability functions of

G2007a, and finally the derivation of new noniterative

parameterizations of the bulk transfer coefficients for

momentum and heat on the basis of the new modified

and extended stability functions.

Finally, we stress that the new stability functions that

will be proposed are conceptually similar to G2007a

because they are based on the same data (SHEBA).

However, they represent a reformulation of findings of

G2007a and, furthermore a fit to the SHEBA data of

similar quality as the G2007a functions. For this reason

they should be understood as an alternative to the

original G2007a functions. They allow also reducing

the complexity of flux parameterizations and help thus

reducing excessive numerical costs when they are ap-

plied to climate models. We also stress that the newly

derived noniterative parameterizations are well suited

for practical applications. Their implementation is

easier, especially in models already using noniterative

parameterizations, such as the models of the European

Centre forMedium-RangeWeather Forecasts (ECMWF),

the Consortium for Small-Scale Modeling (COSMO;

Doms et al. 2011) used by the German Weather Service

(DWD) and model ECHAM6 (Giorgetta et al. 2012), the

atmosphere component ofMPI-ESM (Stevens et al. 2013),

and ECHAM6–Finite Element Sea Ice Ocean Model

(FESOM) (Sidorenko et al. 2015) climate models, just to

mention a few.

2. Background of MOST

Currently, the momentum and heat fluxes in the stable

surface layer are described by the MOST (Monin and

Obukhov 1954; Monin and Yaglom 1971; Foken 2006) or

by the specifically generalizedMOST for stable conditions

(the generalized MOST in the following), see, e.g., the

theories of Nieuwstadt (1984), Sorbjan (1987, 2017),
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Zilitinkevich et al. (2013), and Sukoriansky and Galperin

(2013). Our focus is on the classical MOST. Its validity

is limited to the turbulent fluxes in the lowest part of

the atmospheric boundary layer where they are as-

sumed to be independent on height z above an under-

lying horizontally homogeneous surface at z 5 0. A

further assumption is that turbulence is statistically

stationary. Under these limitations, in the framework

of MOST all the statistics of a turbulent flow are uni-

versal functions of the single stability parameter z5 z/L,

where L is the Obukhov length scale. It combines the

fluxes of momentum t and heat H. Parameters z and L

are given as

z5
z

L
, L5

u2

*
k(g/Q)u*

52
(t/r)3/2

k(g/Q)(H/rc
p
)
. (1)

In Eqs. (1) the friction velocity u* and temperature scale

u* are related with the absolute value t5 jtj5 (t2x 1 t2y)
1/2

of momentum flux t as

t5 ru2

* , (2)

and with heat flux H such that

H52rc
p
u*u*, (3)

where cp is the specific heat at constant pressure, r is air

density, k is the von Kármán constant (set equal to 0.4),

g is the acceleration due to gravity, and Q is either the

virtual potential temperature at some reference level or

the average surface-layer temperature.

In general, MOST is formulated for all moments of

the flow field (Monin and Yaglom 1971). The first-order

moments are the mean wind speed U(z) and mean po-

tential temperature Q(z). For their gradients MOST

states that

kz

u*

›U

›z
5f

m
(z) (4)

and

kz

u*

›Q

›z
5f

h
(z) , (5)

where fm(z) and fh(z) are the MOST nondimensional

universal stability functions for momentum and heat,

respectively. It is assumed that the flux–gradient rela-

tionships (4) and (5) (often called flux–profile relation-

ship) represent the data with a reasonably good accuracy

for the relevant ranges of the stability parameter z. The

functions (4) and (5) are the main ingredients of MOST,

and are normalized as

f
m
(0)5 1 (6)

and

f
h
(0)5Pr

0
(7)

in our study (please see appendix B for details). The

parameter Pr0 5 Pr(0) is the neutral-limit turbulent

Prandtl number Pr, which is defined as

Pr5
w0u0(›Q/›z)

w0u0(›U/›z)
5

f
h
(z)

f
m
(z)

. (8)

This number characterizes the ratio of the momentum

diffusion coefficient Km 52w0u0/(›U/›z) to the scalar

diffusion coefficient Kh 52w0u0/(›u/›z). If mixing of

momentum and scalars have the same efficiency, i.e.,

Km 5 Kh, one has Pr 5 1. It is the case of the Reynolds

analogy for turbulent mixing. If Pr , 1, the turbulent

scalar diffusion is more efficient than momentum dif-

fusion and vice versa for Pr . 1.

Using MOST, the profiles of wind speed U(z) and

potential temperature Qy(z) can be determined. They

are derived by integrating Eqs. (4) and (5). The resulting

flux–profile relationships read as

U(z)5
u*
k
[ln«

m
2c

m
(z)1c

m
(z/«

m
)] , (9)

Q(z)2Q
0
5

u*
k
[Pr

0
ln«

t
2c

h
(z)1c

h
(z/«

t
)] , (10)

with separate neutral and nonneutral contributions.

The first are represented by logarithmic terms depend-

ing on the roughness parameters «m 5 z/z0 and «t 5
z/zt, where z0 and zt are the aerodynamic roughness

lengths for momentum and heat. The nonneutral

contributions consist of stability correction functions

for momentum cm(z) and heat ch(z) (often also called

integrated stability functions). They are related to

the stability functions by the following equations (cf.

Paulson 1970):

c
k
(z)5

ðz
0

I
k
2f

k
(z0)

z0
dz0, f

k
(z)5 I

k
2 z

dc
k

dz
,

k5 [m, h], (11)

with Im 5 1 for momentum and Ih 5 Pr0 for heat. In

stable conditions ck , 0, and vice versa ck . 0 for un-

stable conditions. In the neutral case

c
k
(0)5 0, (12)

so that no correction exists by definition. The mag-

nitude of the aerodynamic roughness lengths z0 and
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zt is related to the height and width of the roughness

elements and to hot/cold spots on the underlying

surface. There are relationships in the literature for

the determination of the z0/zt ratio over sea ice (e.g.,

Andreas 1987; Andreas et al. 2010a,b). However,

there is not yet an overall accepted formulation. If so,

very often z0 and zt are considered in polar research

as constant values. We adopt this assumption in our

research as well.

MOST becomes a closed theory when the stability

functions are given. However, MOST itself does not

provide these functions. Universal stability func-

tions must be determined from precise laboratory ex-

periments, accurate field measurements, appropriate

numerical simulations, and convincing theoretical ar-

guments. In the case of well developed turbulence the

well known Businger–Dyer stability functions (Businger

et al. 1971; Dyer 1974) approximate the measured data

well at near-neutral and weak stability, i.e., for small

values of z # O(1). The Businger–Dyer functions de-

pend linearly on z with

f
m
(z)5 11 a

m
z, f

h
(z)5Pr

0
(11 a

h
z), 0# z, 1,

(13)

where am and ah are empirical constants approximat-

ing most of the known experimental data, if repre-

sentative values am 5 ah 5 5.0 and Pr0 5 1 are used.

However, in literature the documented range of am
and ah is from 4 to 8 (Högström 1988, 1996) and Pr0 is

not always equal to 1.

Corresponding to (13) the stability correction func-

tions cm(z) and ch(z) are also linear functions of z with

c
m
(z)52a

m
z, c

h
(z)52Pr

0
a
h
z, 0# z, 1. (14)

In general, the stability functions fk(z) and stability

correction functions ck(z) are, however, nonlinear

functions in z. But it is important to stress that both

functions (13) and (14) describe any given stability function

in the limit of small z / 0. Practically, this limit holds for

0 , z , 0.08 (see, e.g., Grachev et al. 2015).

At present, there is no consensus in literature about

the correct functional form of stability functions beyond

z ’ 3–5 (Ri ’ 0.2–0.25 and Rif ’ 0.2–0.25; see Grachev

et al. 2013), i.e., in the region of very strong and ex-

tremely strong stability. In this range different re-

searchers suggest nonlinear stability functions, which

differ essentially from each other (Holtslag and De

Bruin 1988; Beljaars and Holtslag 1991; Chenge and

Brutsaert 2005; G2007a). These functions given in

appendix A as well as all other ones mentioned in this

study are shown in Figs. 1 and 2 .

The figures demonstrate moreover that the scatter is

large not only between the empirical stability func-

tions, but also the theoretically derived and empirical

functions differ strongly from each other. As an ex-

ample, we show in the same Figs. 1a and 2a the sta-

bility functions of Sukoriansky (2008) (see appendix A)

derived on the basis of spectral QNSE theory for stably

stratified turbulence (Sukoriansky and Galperin 2013, and

references therein).

Finally, it is unclear if it is possible at all to define

stability functions for the case of extreme stability

(e.g., Grachev et al. 2013) because only very few mea-

surements are available in the range Rib $ 0.2–0.25.

However, some SHEBA data as well the new data of

Srivastava et al. (2020) refer also to this extremely stable

range and the G2007a functions are at least within the

scatter of data (see also sections 4 and 6).

3. Bulk parameterizations in the framework
of MOST

Many atmospheric models use a bulk formulation of

the turbulent fluxes based on MOST. Also bulk transfer

coefficients can be derived from this theory as follows.

One obtains the x (west–east) and y (south–north)

components of momentum transport as

t
x
52rC

d
jU(z)jU(z), t

y
52rC

d
jU(z)jV(z) . (15)

Here, U and V are the x and y components of the

wind vector U, jU(z)j 5 (U2 1 V2)1/2 as before. Cd is

the transfer coefficient for momentum related to the

height z of the lowest model grid level. Similarly, the

well known corresponding equation for heat transport

H reads

H52rc
p
C

h
jU(z)j[Q

y
(z)2Q

0
] , (16)

with the transfer coefficient for heat Ch (see also

appendix B). Qy is the (virtual) potential tempera-

ture. Index 0 refers to the surface value.Cd andCh can

be written as

C
d
5C

dn
f
m
; C

h
5C

hn
f
h
, (17)

where Cdn and Chn are the transfer coefficients for

neutral stratification

C
dn
5

k2

ln2«
m

, C
hn
5

k2

Pr
0
ln«

m
ln«

t

. (18)

The neutral transfer coefficients depend only on surface

properties, and we consider their values as prescribed.

In Eq. (17) fm and fh are nondimensional functions
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depending on both surface properties and stability such

that fm 5 fh 5 1 for neutral conditions. According to

Eq. (17) fm and fh are considered as drag and heat transfer

coefficients normalized by their neutral values. Sometimes,

the fm and fh functions are also called stability functions,

correction functions or mixing functions in the context of

numericalmodeling (see, e.g., Louis 1979; Louis et al. 1981;

Viterbo et al. 1999). We use the term normalized transfer

coefficients in the following to avoid confusion with the

MOST stability functions fm and fh and with the MOST

stability correction functions cm and ch.

The normalized transfer coefficients fm and fh are

formulated in agreement with MOST using cm and ch

[see definition in textbooks; e.g., Eqs. (3.44) and (3.49)

of Garratt (1992)] as

f
m
5

�
12

c
m
(z)2c

m
(z/«

m
)

ln�
m

�22

, (19)

f
h
5

�
12

c
m
(z)2c

m
(z/«

m
)

ln«
m

�21�
12

c
h
(z)2c

h
(z/«

t
)

Pr
0
ln«

t

�21

.

(20)

The set of bulkMOST equations can be combined to a

single equation for the Obukhov length given by

z5Ri
b

12 1/«
t

(12 1/«
m
)2
[ln«

m
2c

m
(z)1c

m
(z/«

m
)]2

Pr
0
ln«

t
2c

h
(z)1c

h
(z/«

t
)
. (21)

This flux–profile relationship relates the stability correction

functions of both momentum and heat to each other, in

contrast to the familiar flux–gradient relationships (4) and

(5) and flux–profile relationships (9) and (10). The bulk

Richardson numberRib naturally appears inEq. (21) as the

FIG. 1. (a) The stability functions fm and fh of Businger et al.

(1971) and Dyer (1974), Holtslag and De Bruin (1988), Beljaars

and Holtslag (1991), Cheng and Brutsaert (2005), G2007a

[Eqs. (24) and (25)], and Sukoriansky (2008), and the functions

(32) and (33) (GLGS) plotted vs z. Individual 1-h averaged

SHEBA data based on median fluxes for five levels are shown

as gray symbols. z refers here to the local value at the mea-

surement height. Closed circles mark the maximum z, for

which the functions are defined. The red circle refers to the

Businger–Dyer curve. Curves without circle are defined for the

whole range shown. Percentage error of fm and fh (b) relative

to the G2007a functions and (c) relative to the Businger–Dyer

functions. The maximum z in (b) and (c) are the same as in (a)

(not shown).

FIG. 2. (a) As in Fig. 1, but for stability correction functions

cm and ch.
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main nondimensional parameter. It provides an integral

measure of stability in the layer 0 # z0 # z and combines

the wind speed U and temperature Qy at a level z as

Ri
b
5

g

Q

(Q
y
2Q

s
)/(z2 z

t
)

U2/(z2 z
0
)2

. (22)

Thus, according to the bulk MOST formulation, the set of

MOST equations must be solved for fluxes using wind

speed U and the temperature difference Qy 2 Qs as ex-

ternal forcing parameters and considering the roughness

length scales for momentum z0 and heat zt as given.

Solutions of Eq. (21) express the stability parameter

z as an implicit, multivariate function of Rib, Pr0, «m, and

«t. When the solution z5 z(Rib, Pr0, «m, «t) of Eq. (21) is

known one can substitute it in the equations specifying

the cm and ch functions. We can use, e.g., Eqs. (34) and

(35) (see section 6) in Eqs. (19) and (20) to find the

normalized transfer coefficients, so also the fluxes of

momentum (15) and heat (16).

For practical purposes and without loss of generality,

it is convenient to rewrite Eq. (21) in the form

cRi
b
5

(12 1/«
m
)2

12 1/«
t

z
ln«

t
2Pr21

0 [c
h
(z)1c

h
(z/«

t
)]

[ln«
m
2c

m
(z)1c

m
(z/«

m
)]2

,

cRi
b
5

Ri
b

Pr
0

, (23)

which is often called the governing MOST equation

(see, e.g., Gryanik and Lüpkes 2018). In (23) cRib is the

equivalent bulk Richardson number combining Rib and

Pr0. We stress that Rib and Pr0 appear in Eq. (21) as the

ratio cRib 5Rib/Pr0. Although Pr0 is occurring on the

right-hand side of Eq. (23), it does not really depend

on Pr21
0 because its cancellation with Pr0 occurring in

the definition of ch according to Eq. (11) with Eq. (7).

For Pr0 5 1 the governing MOST Eq. (23) coincides

with the corresponding equation, e.g., in Gryanik and

Lüpkes (2018).
In general, the solutions of the governingMOSTEq. (23)

are provided by an iterative numerical method (see, e.g.,

Berkowicz and Prahm 1982). The description of many

different numerical approaches and arising difficulties is

given, e.g., by Jiménez et al. (2012).Approximate analytical

solutions are also possible in some cases. They are obtained

as a rule by semianalytical methods, see, e.g., Launiainen

(1995), discussion of different methods by van den Hurk

and Holtslag (1997) and later works by Pleim (2006), Li

et al. (2010, 2014), and Gryanik and Lüpkes (2018) to

mention a few.

4. Stability functions of G2007a

The main ingredients of MOST are the stability

functions fm(z) and fh(z) [see Eqs. (4) and (5)].

For Arctic ocean conditions these functions were

derived by G2007a from SHEBA measurements

(see introduction). G2007a obtained the best agree-

ment with these data by using

f
m
(z)5 11 a

m

z(11 z)1/3

11 b
m
z
, 0# z, 100 (24)

and

f
h
(z)5 11

a
h
z1 b

h
z2

11 c
h
z1 z2

, 0# z, 100 (25)

with am 5 5, bm 5 am/6.5 5 0.77, ah 5 5, bh 5 5, and

ch 5 3. Using then Eqs. (24) and (25) in the first of

the Eq. (11) G2007a derived the stability correction

functions as

c
m
(z)52

3a
m

b
m

(
(x2 1)2

B
m

6

"
2 ln

x1B
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11B
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2 ln
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m
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ffiffiffi
3
p  

arctan
2x2B

mffiffiffi
3
p

B
m

2 arctan
22B

mffiffiffi
3
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B
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!#)
(26)

and

c
h
(z)52

�
a
h

B
h

2
b
h
c
h

2B
h

��
ln

2z1 c
h
2B

h

2z1 c
h
1B

h

2 ln
c
h
2B

h

c
h
1B

h

�

2
b
h

2
ln(11 c

h
z1 z2) , (27)

where x 5 (1 1 z)1/3, Bm 5 (1/bm 2 1)1/3 . 0, and

Bh 5 (c2h 2 4)
1/2
. The region of applicability for cm and

ch is the same as for fm and fh.

The stability functions (24) and (25) are shown in

Fig. 1a and in Fig. 3a together with the corresponding

SHEBAdata and with the data of Srivastava et al. (2020),
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which will be called in the following the Ranchi data.

The selection of these data shown here represent the

most accurate ones (those filtered with Rif , 0.25,

where Rif is the flux Richardson number, value for z 5
0.05 is not included here) (see Srivastava et al. 2020).

Ranchi data without this filtering are for z . 1.2 very

close to the data observed during SHEBA at 2.2m

height (red squares) (not shown). As all other MOST

stability functions the G2007a functions are affected by

self-correlation features since they are traditionally de-

fined via variables (e.g., friction velocity or temperature)

occurring also in the arguments of these functions due to

the Obukhov length. But, as shown by the analysis of

Grachev et al. (2013, 2015) of the SHEBA data, self-

correlation has a reasonably small effect.

The functional forms of fm and fh were designed

using the following physical and practical constraints:

(i) The functions have the correct linear dependence

on z at small z/ 0, namely,fm’ 11 amz andfh’
11 ahz.For large z, the u*-less (frictionless scaling)

limit holds (see G2007a for a discussion), i.e.,

the function fm is proportional to (am/bm)z
1/3 for

z / ‘. The function fh approaches a constant

value fh 5 1 1 bh in the limit z / ‘. This

characteristic, which does not follow the z-less

scaling approach has been discussed in detail by

G2007a. A consequence is that the nonneutral

Prandtl number Pr 5 fm/fh is approaching zero

at z / ‘, which is not in line with theories (e.g.,

Nieuwstadt 1984) but in good agreement with the

SHEBA data [see discussion of the Prandtl num-

ber in Grachev et al. (2007b), and their Fig. 1c]. In

such strongly stable conditions, frictional effects

become small or even negligible and the surface

friction velocity associated with the mean flow may

no longer be a dominant governing velocity scale. For

example, in this regime, the influence of the Coriolis

effect and gravity waves comes into play. In particu-

lar, in the limit of very strong stability, decaying stress

becomes comparable to the Coriolis force even near

the surface leading to significant rotation of the wind

vector with height (Ekman spiral) (Grachev et al.

2008). Also, it can be shown that when Eqs. (32) and

(33) are used, u* has still some impact in the practi-

cally most relevant stability range (z , 100), and that

Pr is still far from zero at z / 100.

FIG. 3. Stability functions (a),(c) fh and (b),(d) fm as a function

of z (log–log scaling). Gray symbols represent SHEBA 1-h aver-

aged data based on the median fluxes for five measurement levels.

In (a) and (b) z 5 zn/L1, where L1 is the Obukhov length at the

lowest measurement level n5 1 and in (c) and (d) z5 zn/L1, where

L is the local Obukhov length and n is the level number. Squares

represent bin-averaged data at the measurement levels (red: 2.2m;

green: 3.2m; blue: 5.1m; brown: 8.9m; black: 14–18.2m; all

SHEBA) and orange squares are the Ranchi data (Srivastava et al.

2020) obtained at 10m height. The black solid line represents

 
the functions of G2007a, the red dashed line shows the new func-

tions (32) and (33) using the optimal coefficients (38) Pr0 5 0.98

and am 5 5.0, bm 5 0.3, ah 5 5.0, and bh 5 0.4.
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(ii) Stability functions fit the SHEBA data in the entire

range of available z reasonably well.

(iii) The functions fm(z) and fh(z) should be ana-

lytically integrable functions of z, resulting in

analytical stability correction functions cm(z)

and ch(z).

One should also pay attention to the fact that the

fh(z) function of G2007a suggest Pr0 5 1. Actually, it is

an additional constraint, which is implicitly imposed by

constraint (i).

The functions by G2007a have been shown to be valid

in a large range of stabilities (see section 1). In this

connection it is important to mention the discussion

presented in Grachev et al. (2013) showing that the strict

applicability of MOST is limited to Ri , Ricr ’ 0.2 2
0.25, where Ri is the gradient Richardson number and

index cr refers to the critical value. That is, the appli-

cability limit for fm and fh is Ri , Ricr. However, for

practical purposes (model parameterizations) we are

forced to use fm and fh in the supercritical regime

(beyond its strict limit of applicability). Ri ’ Ricr cor-

responds to z ’ 1 but practically we need parameteri-

zations for z� 1, maybe up to z ’ 100 and higher. The

application of MOST for z � 1 is common practice in

the modeling community. Note, that according to

Grachev et al. (2013) (Figs. 7 and 8), the upper limit of

MOST in the SBL coincides with the region, for which

the Kolmogorov power law is applicable. In other

words, the condition Ri’Ricr also separatesKolmogorov

and non-Kolmogorov turbulence in stratified turbulent

shear flows.

Nevertheless, the G2007a functions agree well with

the SHEBA measurements in the given range up to

z 5 100 and in the range of scatter with functions of

other authors mentioned in section 2 (thus with data

obtained over land) for the less stable conditions (see

G2007a). Figure 1b visualizes the differences between

the functions (24) and (25) and other ones relative to

the functions of G2007a. The latter agree well with the

other functions in the region of near-neutral and weak

stability as emphasized more clearly in Fig. 1c, where

differences relative to Businger–Dyer functions are

shown. On the contrary, in the region of very stable

and extremely stable conditions the differences be-

tween all stability functions are large.

According to G2007a the stability functions of

Businger–Dyer are applicable up to z ’ 1, of Chenge

and Brutsaert (2005) up to z ’ 5 and of Holtslag and

De Bruin (1988) and Beljaars and Holtslag (1991) for

z , 10. The functions of G2007a are, however, well

supported by measurements for 1 , z , 100. As shown

in Figs. 1 and 2, the scatter of functions [see Eqs. (4) and

(5) for definition] is smaller in their confidence ranges

than beyond these ranges.

The differences are also well pronounced in the sta-

bility correction functions cm and ch. This can be seen in

Fig. 2 showing results for functions of all authors men-

tioned so far.

5. Stability parameter z and transfer coefficients
based on stability functions of G2007a

When stability functions are derived the next logical step

is to check the performance of the functions for the rep-

resentation of bulk transfer coefficients since the latter are

the main ingredients of surface-layer schemes in weather

prediction and climatemodels. This requires (see section 3)

the calculation of the stability parameter z as a function of

Rib, «, «t, and Pr0 following the governingMOST Eq. (21).

In Figs. 4a and 4b we show z obtained from the SHEBA

data together with z derived by Gryanik and Lüpkes
(2018) with Eq. (21) using the stability correction functions

(26) and (27). The latter results are included for a wide

range of the roughness parameters « and «t. In agreement

with Fairall and Markson (1987), Hartmann et al. (1994),

G2007a, Andreas et al. (2010a,b), Lüpkes et al. (2012),

Castellani et al. (2014), and with the summary by

Gryanik and Lüpkes (2018) the most often found

range of stability is 0 # Rib # 0.2 and the most rep-

resentative ranges of the surface roughnesses are

23 102 # «
m
# 1:43 106, «

m
# «

t
# 102«

m
, (28)

which corresponds to roughness lengths

7:13 1026 # z
0
# 53 1022 m, 1022z

0
# z

t
# z

0
(29)

and to neutral drag coefficients at 10m height

0:83 1023 #C
dn
# 5:73 1023 . (30)

In rare cases values are outside of this range, e.g., even

«. 13 1012 (or Cdn , 0.23 1023) has been reported by

Elvidge et al. (2016). However, we consider the values

«
m
5 33 104 and «

t
5 1:53 105 ,

C
dn
5 1:53 1023 and C

h
5 1:33 1023 (31)

as the most typical ones. They are calculated with z 5
10m, z0 5 3.3 3 1024m, and a 5 zt/z0 5 0.2.

The most unexpected finding from Fig. 4 is that z(Rib)

obtained from Eq. (21) with Eqs. (26) and (27) overes-

timates the measured z by far (note the logarithmic

z axis) in the range of small Rib (Rib, 53 1022) when the

most typical roughness conditions over sea ice [Eq. (31)]
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are prescribed. In the range around Rib 5 0.2 there is an

underestimation compared with the measurements.

This finding is crucial since it has a tremendous impact

on the parameterization of turbulent fluxes of momen-

tum and heat. Indeed, panels a and b of Figs. 5 and 6

show that for the typical roughness regime [Eq. (31)]

there are drawbacks with respect toCd and especially for

Ch. Results obtained for Ch with the G2007a stability

correction functions tend to underestimate the obser-

vations for Rib , 0.02 and both Cd and Ch overestimate

the observations for Rib . 0.05 (see also Fig. D5). This

means that using the G2007a functions would cause also

an under/overestimation of themomentumand heat fluxes

in the corresponding stability ranges. Choosing a larger

surface roughness would improve fluxes for near-neutral

conditions but would result in an even stronger overesti-

mation for the very stable and extremely stable ranges.

The results described above motivate us to search for

new stability functions, which are suited to find a com-

promise, i.e., they should represent the local gradients

from one side, the z(Rib) dependence and the bulk

transfer coefficients Cd(Rib) and Ch(Rib) from the other

side, but all with reasonable accuracy.

6. New modified and extended stability functions

To overcome the drawbacks described in the previous

section we suggest here new stability functions for sea

ice–covered polar regions. They are—as the G2007a

FIG. 5. Transfer coefficients Cd as functions of Rib. The red, blue,

and green solid lines represent the parameterizations of Cd and Ch

for z105 10m height ofGryanik andLüpkes (2018) (a)–(c) based on
the stability functions of G2007a and (d)–(f) based on the GLGS

functions. The blue lines in (a)–(c) and (d)–(f) represent the range of

‘‘typical’’ roughness of sea ice but note that different «m and a values

were used. The other colored lines belong to extremely low (red) and

large (green) roughness. Colored squares in (a), (b), (d), and (e) are

the SHEBA observations at the measurement heights z 5 2.2

(red), 3.2 (green), 5.0 (blue), 8.9 (brown), and 14–18 m (black).

In (c) and (f) the squares represent the measurements but related

to z10 applying the formulaCdn105 [log(z/z0)/log(z10/z0)]
2Cdn with

z0 5 2 3 1024 m.

FIG. 4. Stability parameter z as a function of Rib. (a),(b) The red,

blue, and green solid lines are results obtained with the G2007a

functions while the dashed lines represent the corresponding pa-

rameterizations of Gryanik and Lüpkes (2018). The blue line be-

longs to the mean roughness of sea ice found during SHEBA

(called here most typical roughness). Other colored lines belong to

extremely low (red) and large (green) roughness. Gray symbols

represent SHEBA 1-h averaged data based on the median fluxes

for five measurement levels. Brown bullets represent bin-averaged

SHEBA observations. (c),(d) As in (a) and (b), but colored solid

lines were obtained with the new stability correction functions (34)

and (35) using the optimal coefficients (38) Pr05 0.98 and am5 5.0,

bm 5 0.3, ah 5 5.0, and bh 5 0.4. Dashed lines represent the ap-

proximate solution as explained in section 8.
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functions—also based on the SHEBA data and on the-

oretical arguments but—as will be shown—they are less

complex than the G2007a functions and they slightly

better represent the relationships between fluxes and

the nondimensional gradients fm 5 fm(z), and fh 5
fh(z), and between the stability parameter and the bulk

Richardson number z 5 z(Rib). Most important is that

the application of the new functions improve also the

relationship between bulk transfer coefficients and bulk

Richardson numbers Cd 5 Cd(Rib) and Ch 5 Ch(Rib).

In the following, we first propose the new stability

functions. Then, we optimize free constants of these

functions in order to improve the representation of the

observed relationships.

a. Functional form of new stability functions

We suggest modified universal stability functions as

f
m
(z)5 11

a
m
z

(11 b
m
z)2/3

, 0# z, 100, (32)

f
h
(z)5Pr

0

�
11

a
h
z

11 b
h
z

�
, 0# z, 100, (33)

where am, bm, ah, and bh are empirical constants (their

values will be determined in the next section), and Pr0 is

the neutral-limit Prandtl number as before.

These functions are very similar to those suggested by

G2007a [cf. Eqs. (32) and (33) with Eqs. (24) and (25)].

But they are defined by only four empirical constants and

lead to arithmetically simple modified stability correction

functions. After integration of Eqs. (32) and (33) we find

c
m
(z)523

a
m

b
m

[(11b
m
z)1/3 2 1], 0# z, 100, (34)

c
h
(z)52Pr

0

a
h

b
h

ln(11 b
h
z), 0# z, 100. (35)

It is important to emphasize that the constraints (i) to

(iii) (see section 4) formulated by G2007a do not define

stability functions uniquely (see the discussion by

G2007a), and that all the constraints are satisfied by the

modified functions (32) and (33) as well. In particular,

the limits of the new stability function (32) and (33) for

z / 0 and z / ‘ are similar to those of the G2007a

functions. The asymptotes are given as

f
m
(z)5

(
11 a

m
z, z/ 0,

(a
m
/b2/3

m )z1/3, z/‘
(36)

and

f
h
(z)5Pr

0

�
11 a

h
z, z/ 0,

11 a
h
/b

h
, z/‘ .

(37)

Correspondingly, the asymptotes of the new stability cor-

rection functions (34) and (35) are similar to those of the

G2007a functions. In the following,we call thenewmodified

stability functions (32) and (33) and new stability correction

functions (34) and (35) GLGS functions for simplicity.

b. Optimization of empirical constants of new
stability functions

To improve the representation of the observed rela-

tionships we apply a new optimization strategy for the

GLGS functions, which has not been applied until now:

Keeping their functional form unchanged, we assume that

the constants am, ah, bm, and bh should not be obtained by

optimizing either the agreement with the observed fm 5
fm(z) and fh 5 fh(z) or with the observed z 5 z(Rib),

Cd5Cd(Rib), andCh5Ch(Rib) independently from each

other, but by the best fit of the functions altogether.

The optimization of the coefficients depends on the

ranges of the parameters « and «t and on the value of Pr0.

FIG. 6. As in Fig. 5, but for Ch and values related to z10 5 10 m

height are obtained assuming that Chn10 5 [log(z/z0)/log(z10/

z0)][log(z/zt)/log(z10/zt)]Chn with zt 5 1.4 3 1024 and z0 5
2 3 1024 m.
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For «, «twe consider the ranges (28). There is no obvious

reason to use another value than Pr05 1 (seeG2007a) or

Pr0 5 0.98 (see Sorbjan and Grachev 2010; Sorbjan

2017) as the most relevant value for the SHEBA data.

Applying the trial and error method we find as a

compromise the optimal constants

Pr
0
5 0:98, a

m
5 5:0, a

h
5 5:0, b

m
5 0:3, b

h
5 0:4,

(38)

which result in stability functions well suited to repre-

sent all relationships mentioned above simultaneously.

The optimized stability functions fm and fh and the

stability correction functions cm and ch are shown in

Figs. 1 and 3 partly together with SHEBA data and with

the functions of G2007a. The corresponding approx-

imation of the stability parameter z(Rib) is shown

in Figs. 4c and 4d. The transfer coefficients Cd and

Ch based on the new functions are given in Figs. 5d–f

and 6d–f.

One can see fromFigs. 1 and 3 that theGLGS functions

(32) and (33) with the constants (38) fit the SHEBA data

reasonably well especially when the locally measured

fluxes are used (Figs. 3a,b). Compared with the G2007a

functions there is an improvement in the range z. 5 for

the local data (especially upper-level measurements

between 5 and 18m height). The modified fh function

agrees also slightly better with the Ranchi data than the

G2007a function in the shown range. Also, a slight im-

provement of agreement with the SHEBA data relative

to the G2007a functions is found for the z(Rib) rela-

tionship for 0.15, z, 0.25 (see Figs. 4b,d). There is also

some improvement for Rib , 0.02 (see Figs. 4a and 4c

with logarithmic x axes). Namely, for Rib, 0.02 the blue

curve for the typical conditions is slightly closer to the

observations when the modified functions are chosen.

Note that we used here the values

«5 1:33 104, «
t
5 1:863 104 (39)

instead of those given by Eq. (31). The corresponding

values in terms of transfer coefficients at 10m height and

roughness lengths are

C
dn
5 1:783 1023, C

hn
5 1:723 1023 ,

z
0
5 7:73 1024 m, z

t
5 5:43 1024 m, (40)

so that a5 zt/z05 0.7. This modification results from the

demand to improve the z(Rib) relation in the near-

neutral range where the sensitivity to the roughness is

large (see Fig. 4). The new values, which we call in the

following also ‘‘typical,’’ represent a compromise since

in the near-neutral range values of Cd and Ch are at the

upper limit of the bin averaged SHEBA observations

(Figs. 5 and 6, panels d–f). Finally, there is also an

improvement for the transfer coefficients Cd(Rib) and

Ch(Rib) especially in the range Rib , 0.01 (Figs. 5, 6)

but also in the range Rib . 0.1 (Fig. D5), which is most

important since the transfer coefficients determine

the fluxes. This is further discussed in section 11 and

appendix D.

We stress that theGLGS functions should beunderstood

as a replacement of the G2007a functions for two reasons.

The first is the improvementwith respect tomeasurements.

Here, especially, the improvement resulting for the transfer

coefficients is important since they influence the fluxes. The

second is that the new functions allow a more efficient use

of the G2007a findings. In general, they are more suitable

for the solution of particular problems as will be argued in

the following sections discussing benefits of using the new

stability functions.

Moreover, it is important to note that according to

our analysis the best fit of the new functions either to

the stability functions by G2007a or to a version with

optimal agreement between the parameterized and the

observed z(Rib) relationship results in significantly

different fitting constants. Optimal coefficients Pr0, am,

bm, ah and bh for these both limiting cases are provided

in appendix D. The constants (38) are optimal for the

full ranges (28). It is obvious that the reliability of the

coefficients depends on the ranges of z and Rib, for which

the functions are defined. A better agreement can be

reached, e.g., when the range is limited to 0.05, z # 10.

We will discuss this issue also in appendix D.

7. Benefits of using the GLGS functions

A numerically efficient calculation of turbulent fluxes

for momentum and heat in weather prediction and cli-

mate models requires analytically simple formulations of

functions representing the wind and temperature profiles.

It is obvious that the new simple functional form of the

stability functions (34) and (35) is an advantage and a

necessary prerequisite for obtaining an approximate

analytical solution of the nonlinear governing MOST

Eq. (23). Using the simpler GLGS functions in the

governing MOST equation, a solution z 5 z(Rib, «m, «t)

can be found more easily. It can be used to obtain

new parameterizations of the transfer coefficients Cd 5
Cd(Rib, «m, «t) andCh5Ch(Rib, «m, «t) and finally of the

unknown turbulent fluxes t and H. It can be expected

that these parameterizations are analytically simpler

than the solution ofGryanik and Lüpkes (2018), which is
based on the original stability correction functions of

G2007a, so that it can be installed with less programming

effort in numerical models. It is also expected that the
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parameterizations would be more accurate because the

empirical relationships z 5 z(Rib), Cd 5 Cd(Rib), and

Ch 5 Ch(Rib) were already taken into account while

constructing the new stability functions.

Many other advantages of using simple analytical

formulations for stability functions are discussed by

Pleim (2006) and Lüpkes et al. (2012). For example, the

normalized transfer coefficients fm and fh are the main

ingredients of mixing-length closure schemes (also often

called first-order closuremodels orK theory) used in the

atmospheric boundary layer in many climate models.

According to the hypothesis of Louis (1979) these

functions characterize the stability effects on eddy vis-

cosity Km and on the eddy scalar diffusion coefficient

Kh with

K
m
52

w0u0

›U/›z
5 l2mfm

����dU›z
����, K

h
52

w0u0

›Q/›z
5 l

m
l
h
f
h

����›Q›z
���� ,

(41)

when the bulk Richardson number is replaced by

its numerical gradient Richardson number counterpart.

Here, U and V are the x and y components of the mean

wind vector U, jdU/dzj 5 [(dU/dz)2 1 (dV/dz)]1/2,

fm 5 1/f2
m, fh 5 1/(fmfh), and lm and lh are the neutral-

limit mixing lengths for momentum and temperature,

respectively. The simple functional form of the GLGS

functions results in the simple Eq. (41).

Another benefit of the GLGS functions, also related

to their simplicity, arises when they are used for studying

the stability dependence of form drag (Lüpkes and

Gryanik 2015). However, both K theory and the effect

of form drag are beyond the scope of our current re-

search whose focus is on the parameterization of the

near-surface bulk momentum and heat fluxes and cor-

responding transfer coefficients.

Finally, the new functions result in the observed de-

pendence of the heat flux as a function of z with one

maximum (not shown here). As shown by Srivastava and

Sharan (2019) some other nonlinear stability functions

produce two maxima, which contradicts observations.

8. Approximate solution of the governing MOST
equation

To solve the governing MOST Eq. (23) using the

GLGS functions (34) and (35) we apply a semianalytical

approach following Gryanik and Lüpkes (2018).
We search for anapproximate solution z5 z(cRib, «m, «t)

of Eq. (23) in the functional form

z5CcRi
b
1AcRigb , (42)

with the exponent g and with the two functionsC(«m, «t)

and A(«m, «t, g).

The coefficient

C5
ln2«

m

ln«
t

(43)

describes the limitcRib / 0. In this limit the first term in

Eq. (42) coincides with the exact solution. The coeffi-

cients A(«m, «t, g) describe the growth rate of z at largecRib. As shown by Gryanik and Lüpkes (2018) the co-

efficient A(«m, «t, g) is given by

A5 z
a
cRi2g

b,a 2
ln2«

m

ln«
t

cRi12g
b,a , (44)

with

cRi
ba
5

(12 1/«
m
)2

12 1/«
t

z
a

ln«
t
2c

ha

(ln«
m
2c

ma
)2
, (45)

where

c
ma

5c
m
(z

a
)2c

m
(z

a
/«

m
), c

ha
5c

h
(z

a
)2c

h
(z

a
/«

t
) .

(46)

In Eq. (46) za is the representative value of z, for which

the function (42) coincides with the exact solution of the

governing MOST Eq. (23).

For relevant ranges of cRib, «m, and «t, the optimal

values of the two fitting parameters g and za are calcu-

lated numerically by a variational method using the least

squares fit metric

J5
1

D

ðbRib,max

0

ðln«1
ln«2

ðln«t1
ln«t2

"
f
k
(cRi

b
, «

m
, «

t
)2 f

k,ex
(cRi

b
, «

m
, «

t
)

f
k,ex

(cRi
b
, «

m
, «

t
)

#2
3 d ln«

t
d ln«

m
dcRi

b
, (47)

where D5cRib,max ln(«1/«2)ln(«t,1/«t,2) is a normaliza-

tion factor. Subscript k 5 m is used for momentum and

k5 h for heat. The cost function (47) provides ameasure

of the deviation of the approximate analytical solution

from the exact numerical solution. Note that in Gryanik

and Lüpkes (2018) the difference in z has beenminimized

but we take here fm since finally this is most important for

the fluxes. Themetric J depends on the two variables g and

za and on the parameters cRib,max , «2, «1, «t,2, and «t,1,

which specify the relevant confidence ranges for stabilitycRib and roughnesses «m and «t. Values are cRib,max 5 0:3,

and for «2, «1, «t2, and «t1 those defined by Eq. (28).

We found that minimizing fm or fh resulted in values of

g and za that differed only very slightly from each other.
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It is worth to note that the coefficientA can be written

in more compact form by combining Eqs. (44)–(46). The

result is

A5
(ln«

m
2c

ma
)2(g21)

zg21
a (ln«

t
2c

ha
)(g21)

"
(ln«

m
2c

ma
)2

ln«
t
2c

ha

2
ln2«

m

ln«
t

#
.

(48)

Formally, the approximate solution (42) is valid for ar-

bitrary stability functions. However, for given cm(z)and

ch(z) the quality of approximation depends on the

choice of the particular values of g and za. These depend

on the specific features of the functional form of the

stability functions and on the range of independent

variables, i.e., cRib,max , «2, «1, «t,2, and «t,1.

Using the GLGS functions (34) and (35) and applying

the cost function (47) in the ranges (28) we find the

optimal value of the exponent g and the optimal stability

parameter za for the set of parameters (38) as

g5 3:625, z
a
5 7:25: (49)

Figure 7 shows that the solution (49) is unique. This was

similar also for the other parameter sets discussed in

section 11.

Inserting values (49) into the general Eqs. (42) and

(48) with Eq. (46), one obtains the new parameteri-

zation as

z5CcRi
b
1AcRi3:625b , (50)

with the coefficient C given by Eq. (43) and with

A5
(ln«

m
2c

ma
)5:25

181:3(ln«
t
2c

ha
)2:625

"
(ln«

m
2c

ma
)2

ln«
t
2c

ha

2
ln2«

m

ln«
t

#
,

(51)

where

c
ma

5250:0[1:472 (11 2:17/«
m
)1/3], (52)

c
ha
5212:25 ln[3:9/(11 2:9/«

t
)]. (53)

The results obtained by the approximate analytical

and exact numerical solutions for the stability parameter

z are shown in Fig. 8. The curves visualizing the

exact solution were obtained numerically by calculatingcRib 5cRib(z, «m, «t) using Eq. (23) in a given range of

z for prescribed values of «m and «t, and then plotting the

result z5 z(cRib, «m, «t).

Note that in a weather prediction or climate modelcRib can be calculated based on the predicted wind

and temperature as well as humidity at the surface and

first grid level. The most accurate procedure for the

necessary determination of z(cRib) is to solve Eq. (23) by

numerical iteration. The approximate solution can be

calculated, however, by the explicit Eq. (50). It repro-

duces the exact numerical solution with a mean error

smaller than 5% and with a maximal error of 10% in the

range 0, Rib , 0.2 (so that 0,cRib , 0:162 0:2 for Pr0
in the range 0.75–1). The good agreement of the stability

parameters obtained from both solutions indicates that

our approximation is reasonable for the considered

ranges of stability and roughness.

However, the parameterization can be further

simplified. For the representative SHEBA values

of the roughness parameters, we obtain «m � 1 and

«t � 1; if so, the small terms 1/«m, 1/«t and cm(za/«m)

and cm(za/«m) in Eqs. (45) and (46) can be neglected.

Then the functions cma and cha in Eqs. (52) and (53)

become independent on the roughness parameters and

can be replaced by the constant values cma 5 223.50

and cha 5 216.67. As a result of all these simpli-

fications, the parameterization of the stability pa-

rameter z is provided by Eq. (50) with the coefficient

C as before and with the simplified coefficient (51)

found as

A5
(ln«

m
1 23:50)5:25

181:3(ln«
t
1 16:67)2:625

"
(ln«

m
1 23:50)2

ln«
t
1 16:67

2
ln2«

m

ln«
t

#
.

(54)

The differences between the approximate solution (50)

with Eqs. (43) and (51) and the corresponding simplified

solution (50) with Eqs. (43) and (54) are so small that

for most curves they are invisible in Fig. 8. Therefore,

FIG. 7. Cost function J [Eq. (47)] as a function of za and g. White

dashed lines represent the ideal values (49) with the smallest value

of J for the parameter set (38).
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=1.5x10

FIG. 8. The stability parameter z5 z/L as a function of (a) Rib, (b) «m, and (c) a. The solid lines show the exact solutions of the governing

MOST Eq. (23) obtained with the GLGS functions (34) and (35). The dashed lines represent results of the new parameterization

[Eqs. (50)–(53) andwith Eq. (43)]. The same curves describe also the simplified parameterizations [Eqs. (50) with Eqs. (43) and (54)], since

the difference between results of both parameterizations are invisible in the figures. In (b) and (c) curves are shown for Rib equal to

0.1 (green), 0.15 (blue), and 0.2 (red). Gray and brown symbols represent SHEBA measurements as in Fig. 4.
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in the following we will use only the simplified equation

without loss of accuracy.

Finally, it is worth stressing a drawback of our semi-

analytical solution. It does not result in the exact as-

ymptotic behavior of transfer coefficients for Rib / ‘.
But this is not a serious problem because the numerical

values of exponents g for the exact and approximate

solutions are very close to each other. The small differ-

ence appears due to our intention to achieve a high ac-

curacy in the finite range 0 , Rib , 0.2.

9. Parameterization of transfer coefficients and
guide for implementation in climate models

When the approximate solution for the stability pa-

rameter z(cRib, «m, «t) is known, the explicit formulas

for the normalized transfer coefficients are obtained

algebraically by inserting Eq. (50) into Eq. (34) for the

stability function cm(z) and in Eq. (35) for the function

ch(z). Then the result is used in Eqs. (19) and (20),

where the small terms cm(za/«m) and ch(za/«m) can be

neglected without loss of accuracy as described above.

Thus, we obtain

f
m
5 11

50:0

ln«
m

11 0:3
ln2«

m

ln«
t

cRi
b

 "( 

1AcRi3:625b Þ�1/3 2 1gÞ22

(55)

and similarly

f
h
5 f 1/2m 11

12:5

ln«
t

ln 110:40
ln2«

m

ln«
t

cRi
b
1AcRi3:625b

 !" #( )21

,

(56)

with the coefficient A given by Eq. (54).

The curves showing these functions are presented in

Fig. 9 for the exact solution and for its approximated

counterpart. For comparison, in the same figures (here

and in following) the lowermost solid lines visualize the

transfer coefficients based on the integrated Businger–

Dyer stability functions (14).

Finally, using Eqs. (55) and (56) in Eqs. (17), we find

the formulas for the transfer coefficients Cd and Ch as

C
d
5

k2

ln«
m
1 50:0 11 0:3

ln2«
m

ln«
t

cRi
b
1AcRi3:625b

 !" #1/3
2 1

8<:
9=;

0@ 1A2
, (57)

C
h
5

kC1/2
d

ln«
t
1 12:5 ln 11 0:40

ln2«
m

ln«
t

cRi1AcRi3:625b

 !" #,
(58)

with the function A(«m, «t) given by Eq. (54) in both

transfer coefficients.

In Fig. 10 we show the transfer coefficients Cd and Ch

as a function ofcRib for given «m and a. As expected, the

transfer coefficients are equal to the neutral limit atcRib 5 0

for all «m and «t, and they decreasemonotonicallywhencRib
increases. This dependence is very common for all transfer

coefficients and is in agreement with measurements. The

difference between the exact and approximateCd andCh is

smaller than 5% in the range 0#cRib # 0:2, which is most

often observed (see G2007a; Grachev et al. 2013).

The agreement is that high because the approxi-

mate solutions (57) and (58) reproduce the exact

ones in the limit cRib / 0 for all values of am, bm, ah,

and bh. And, moreover, in the opposite limit z / ‘
the asymptotes

f
m
;

1

z2/3
;

1cRi
2:42

b

, f
h
;

1

z1/3 lnz
;

1cRi
1:21

b lncRi
b

(59)

also approach the exact solution

f
m
;

1

z2/3
;

1cRi
2

b

, f
h
;

1

z1/3 lnz
;

1cRi
b
lncRi

b

. (60)

The asymptotes (59) for Rib/‘ easily follow fromEqs.

(57) and (58) using asymptotic expansion in the small

parameter 1/Rib.

Thus, the Eqs. (57) and (58) with Eq. (54) represent the

main result of this work. Due to the compact functional

form of the GLGS functions they provide new, explicit

noniterative parameterizations of the transfer coefficients

Cd andCh as a function ofcRib for given parameters Pr0, «m
and «t. When the parameterizations are implemented in a

model we recommend testing a hierarchy, by using either
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representative values for both «m and «t (level 1) or a

representative value for «m and assume «m 5 «t (level 2).

Using these assumptions, simplified analytical expressions

for Cd and Ch can be easily derived.

10. Comparison with earlier parameterizations

In this section we compare the noniterative parame-

terizations of transfer coefficients based on the GLGS

functions with earlier noniterative parameterizations of

Gryanik and Lüpkes (2018), which are based on the

G2007a stability functions, and with parameterizations

of Louis (1979) and Louis et al. (1981), which are often

used in climate models.

Parameterizations of the transfer coefficients Cd

and Ch based on the G2007a stability functions were

given already by Gryanik and Lüpkes (2018). Their

explicit formulae, expressing Cd and Ch in terms

FIG. 9. Normalized transfer coefficients fm and fh as a function of Rib for given «m and a. The thick solid lines show the coefficients obtained

using the exact solutions of the governingMOSTEq. (23) based on theGLGS functions (34) and (35). Thin solid lines with fm5 fh5 0 forRib$

0.2 represent the solution based on the Businger–Dyer stability functions. The dashed green, red, and blue lines show the parameterizations (55)

and (56). Brown dashed lines refer to the parameterization by Louis (1979) [Eq. (65)]. The gray symbols are the SHEBA data at all levels

averaged over 1 h. Colored squares represent bin averages of measurements at different heights where the color coding is as in Fig. 5.
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of the bulk Richardson number Rib, «m, and «t are

given by Eqs. (17) with the neutral values of Cdn and

Chn from Eq. (18) and with the functions fm and fh
given by

f
m
5

(
12

1

ln«
m

"
10:292 19:5x1 2:18 ln

(x1 0:67)2

x2 2 0:67x1 0:45

1 7:54 arctan(1:725x2 0:58)

#)22

, (61)

f
h
5 f 1/2m

�
12

1

ln«
t

�
2:162 2:5 ln(11 3z1 z2)

1 1:12 ln
z1 0:38

z1 2:62

�	21

, (62)

where x 5 (1 1 z)1/3 and z is provided by the parame-

terization of the stability parameter

z5
ln2«

m

ln«
t
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b
1

(ln«
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1 11:3)3:82

11:5(ln«
t
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"
(ln«
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1 11:3)2

ln«
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1 6:4

2
ln2«

m

ln«
t

#
Ri2:91b . (63)

These parameterizations were derived for the same

ranges of stability Rib and roughness parameters «m and

«t as considered in the present work. The optimal values

for the exponent g and the parameter za related to the

G2007a stability functions were determined as

g5 2:92, z
a
5 3:6: (64)

Thus, especially the value for za differs from the value

7.25 related to the GLGS functions.

Figure 11 shows the differences between the func-

tions fm and fh following from Eqs. (61) and (62) and

from Eqs. (55) and (56). Obviously, the scheme based

on the G2007a functions produces too large values

of fm and fh in the region Rib .0.1 although there

is a large improvement relative to the Louis (1979),

Louis et al. (1981), and Launiainen (1995) schemes as

discussed in Gryanik and Lüpkes (2018). We refer

the reader to the latter work for a detailed study of

differences between their scheme and earlier ones. We

just stress here that relative to the SHEBA data a

significant overestimation of momentum and heat

fluxes by Louis (1979) was found and that the essential

dependence of fm and fh functions on roughnesses and

their interplay with stability effects was completely

absent. But as Fig. 12 shows, due to the overestimation

of fm and fh in the very stable range, also Cd and Ch are

overestimated when the original G2007a functions are

chosen. This would lead to an overestimation of the

fluxes as well.

Concerning the dependence on roughness we add

here one important point, which was not yet mentioned

by Gryanik and Lüpkes (2018). Many models use ap-

proaches as those of Louis (1979) and Louis et al. (1981)

where the normalized transfer coefficients depend on

Rib only. For example, the parameterization, which is

used in the ECMWF model for a long time, applies the

simple parameterization

f
m
5

1

(11 bRi
b
)2
, (65)

with the numerical constant b 5 4.7. When this parame-

terization is used in Eq. (17), Cd and Ch depend on the

roughness parameter «m only due to the corresponding

dependence of Cdn and Chn. Louis derived the functional

form and adjusted the coefficients of his parameterization

(65) on the basis of the Businger–Dyer stability functions,

due towhich the fluxes of momentum and heat amount to

zero for a Richardson number larger than the critical one.

At the time of the derivation of the Louis approach these

were the only well documented stability functions. Using

the Businger–Dyer stability correction functions Louis

FIG. 10. Transfer coefficients (top) Cd and (bottom) Ch at 10m

height as a function of Rib. The thick solid lines show the coeffi-

cients obtained using the exact (iterative) solutions of the gov-

erning MOST Eq. (23) based on the GLGS functions (34) and (35)

for «m and a as indicated in the figure. Dashed green, blue, and red

lines represent the results of the approximations (57) and (58).

Brown dashed lines refer to the parameterization by Louis (1979)

[Eq. (65)]. Measurements are shown in Figs. 5 and 6.

2704 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/13/21 12:46 PM UTC



computed fm and fh as functions of Rib for different «m 5
«t and then proposed the best fit for all curves. Implicitly

such a fit assumes the existence of some representative «m
for a relevant range of roughness. For the Businger–Dyer

stability functions the dependence of the normalized

transfer coefficients on the roughness, is indeed, very

small (see, e.g., Fig. 2 in Gryanik and Lüpkes 2018). So,
they were approximated by Louis as depending only on

stability. Later, the Louis approach was applied without

discussion to many other stability functions. Delage

(1997) adjusted the only coefficient b of the parameteri-

zation (65) to the new value b 5 12. This value was

optimal to fit results based on the stability functions of

Beljaars and Holtslag (1991), which do not contain a

critical Richardson number.

All this shows that there are important conceptual

differences between the parameterizations of Louis and

the new ones.

11. Discussion

In this section we discuss the flexibility and robustness

of the GLGS functions. Finally, we provide an overview

of the assumptions and important constraints.

FIG. 11. As in Fig. 9, but short-dashed lines refer to results obtained with the original stability functions of G2007a.
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a. The flexibility/robustness of the new stability
functions

Our analysis of the previous sections revealed that the

functional form of the GLGS functions is flexible in the

sense that they can be used for an optimal approxima-

tion not only of the nondimensional gradients, but also

of the stability parameter–bulk Richardson number

relationship. It was demonstrated that the assumptions

for the optimization offer constraints for the empirical

constants. However, the following questions can be

asked: How robust are the values of these constants and

how far does the accuracy of the nondimensional gra-

dients decrease when only the z(Rib) dependence is

optimized?

To answer these questions we performed a sensitivity

analysis, which is presented in detail in appendix D.

Summarizing the results, our analysis shows that it is ex-

tremely difficult to establish an accurate approximation

of the stability functions fulfilling all requirements, namely,

to minimize the differences to the observed flux–gradient

and flux–profile relationships and to the transfer coef-

ficients using the same empirical constants am, bm, ah,

bh, and Pr0. The optimal set of parameters for one of

the relationships differs significantly from the optimal

set for the other relationship. However, we stress that

the GLGS functions provide a reasonable compromise

solution when the set of parameters (38) is used.

Furthermore, it is possible to define a set of constants,

for which the z(Rib) relationship and the transfer coef-

ficients can almost not be distinguished from those based

on the original G2007a functions. This result is impor-

tant because it shows that theG2007a functions could be

replaced by a simpler formulation just for practical

reasons, namely, to save computing time in climate and

weather prediction models.

Finally, we stress that important constraints, which

were imposed on the original stability functions of

G2007a (their constraints i–iii, p. 328) are approximately

satisfied by the GLGS functions (34) and (35) as well.

So, the limit of the modified fm function for z / ‘ is

(am/b
2/3
m )z1/3. With the proposed values am5 5 and bm5

0.3 we obtain the numerical limit 11.2z1/3 compared to

6.5z1/3 as obtained from the corresponding G2007a func-

tion. We argued that this difference causes only a small

discrepancy in the near-neutral range due to the relatively

small sensitivity of the fm function to bm. However, it

became important for a better reproduction of the

SHEBA data for stronger stability. The limit of the

modified fh function for z / ‘ is a constant equal to

11 ah/bh 5 12.5 (using Pr0 5 1.0). This is twice larger

than the value 6.0 of G2007a and than the value 6.2

resulting from functions by Webb (1970). For the

SHEBA data the limit is reached already for Rib .
10. One can see also that the larger limit 12.5 is still in

the scatter of the SHEBA data. The value ah 5 5.2 by

Webb (1970) is similar to the value 6.0 found by

G2007a and very close to our result ah 5 5.0, if one

accepts the accuracy estimation of 30% by Webb

(1970) and Högström (1996) for the MOST coeffi-

cients. Although until today the physical mechanisms

explaining the scatter of ah for large stability are

unknown, the levelling of fh is well documented

by measurements. It is attributed to the nonstationarity

of turbulence at the large stability limit (Mahrt 2007)

and to the ceasing of developed Kolmogorov turbulence

in the range of large stability (Grachev et al. 2013).

b. Overview of assumptions and important
constraints

Our assumptions are the following ones:

(i) The universal functions depend linearly on z at

small z, namely, fm ’ 1 1 amz and fh(z) ’ 1 1
ahz for z / 0. The universal function for momen-

tumfm is proportional to z1/3 in the limit z/‘, but
the function for heat fh approaches a constant

value Pr0(1 1 ah) in the same limit z / ‘.
(ii) The stability functions fit the measured data in the

available range of the stability parameter z, simul-

taneously approximating the flux–nondimensional

gradient relationship and the stability parameter–

bulk Richardson number (z–Rib) relationship

reasonably well.

FIG. 12. As in Fig. 10, but short-dashed lines refer to results ob-

tained with the original stability functions of G2007a.
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(iii) Both functions fm(z) and fh(z) are analytically inte-

grable functions of z resulting in analytically tractable

stability correction functions cm(z) and ch(z).

(iv) The functions cm(z) and ch(z) and their derivatives

do not have any singularities at z 5 0, thus allowing a

continuous matching with the stability functions in

the unstable range z , 0.

(v) The stability correction functions cm(z) and ch(z)

are applicable for all z, i.e., provide reasonable

physical characteristics of the bulk transfer coef-

ficients. They must be monotonically decreasing

functions with respect to the stability parameter

z (Sharan and Kumar 2010).

The assumption (i) on the limit z / 0 is probably the

most solid one. The asymptotic limit z/ 0 (often called

log-linear limit, or limit of the Businger–Dyer stability

function, or simply Businger–Dyer limit) is well sup-

ported by data from field measurements, laboratory

experiments and numerical simulations. It holds for a

limited range of stability 0, z , 0.08 (corresponding to

0 , Rib , 0.05 for the stability functions of G2007a).

This fact is well documented by earlier studies (see, e.g.,

Businger et al. 1971; Webb 1970), as well as by results of

recent fieldmeasurements (see, e.g., G2007a). However,

the region of validity of the log-linear asymptotes de-

pends on the used stability functions (see Fig. 1).

The constraint (i) on the limit z / ‘ is less solid. As

shown by G2007a, the asymptote for fm (often called

u*-less limit) holds for very large z. But in this range the

measurement of fluxes is difficult due to their small

values. The asymptote forfh(z), which levels off at large

z, is also very uncertain in the range of extremely large

stability. The reason is again related to the difficulty of

measuring small heat fluxes. Both the stability functions

for momentum and for heat have an accuracy not higher

than 20%–30% (see, e.g., Webb 1970; Foken 2006). The

plots in Fig. 1b also demonstrate that the asymptotes

(ii) are not accepted by all authors.

The constraint (ii) is satisfied by the GLGS functions

by construction.

The constraint (iii) guaranties a reasonably simple

analytically tractable functional form of stability cor-

rection functions cm(z) and ch(z). From a first point of

view the constraint (iii) has a technical character and has

no obvious theoretical support. However, keeping in

mind that wind speed and temperature profiles are ex-

plicitly involved in the calculation of many physical

characteristics of the stable surface layer, the constraint

(iii) becomes practically very desirable. Corresponding

benefits were already discussed in section 7 in details.

The constraint (iv) of a smooth matching with the

convective stability range (z , 0) is realized for the

GLGS functions without problems. Indeed, the argu-

ment of analyticity at z 5 0 holds due to the linear de-

pendence of cm(z) and ch(z) on z for z / 0. This

constraint actually is not new. Louis (1979) applied this

constraint to establish continuous and smooth transfer

coefficients at Rib 5 0 in numerical models. From

Eqs. (34) and (35) it is obvious that continuity and

smoothness of transfer coefficients in Rib immediately

follows from continuity and smoothness of the cm(z) and

ch(z) functions in z [see Eqs. (34) and (35)] and vice versa.

The constraint (v) suggested by Sharan and Kumar

(2010) implies that

dC
k

dz
# 0, C

k
(0)5C

kn
, k5 [d, h] (66)

for any given stability correction function cm(z) and

ch(z) in the range 0# z#‘ and for all relevant values of

the roughness parameters. This hypothesis is based on,

and supported by, all measurements that are known

nowadays with reasonable accuracy. The constraint (66)

provides a rigorous criterion for the upper bound of the

region of applicability of the stability correction func-

tions cm and ch. Sharan and Kumar (2010) used the

criterion in order to prove that the stability functions of

G2007a are applicable for all z. It is expected that the

GLGS functions (34) and (35) are applicable as well,

since they closely approximate the functions of G2007a.

Our straightforward analysis (see appendix C) indeed

leads to the conclusion that the inequalities (66) are

satisfied by the GLGS functions. If so, the GLGS

functions are applicable and have no upper bound

for the region of applicability, similar to the G2007a

functions.

Finally, to the best of our knowledge, the above full list of

constraints was never formulated before explicitly. The

establishing of constraints is important not only for empir-

ical stability functions. They can be interpreted also in a

more general context, i.e., as constraints, which must be

imposed on any stability function, derived theoretically

from advanced closure models of second and higher order.

Even when the equations for stability functions can be de-

rived from the set of second-order or third-order closure

model equations, the solution of these equations provides

stability functions in implicit form (see, e.g., Canuto et al.

1994). Their inversion, as a rule, cannot be carried out an-

alytically, so only a numerical or an approximate analytical

method of inversion can be used. In the latter case the de-

scribed constraints provide a guiding line, to avoid errone-

ous results. The same is true also for spectral closuremodels

(e.g., Sukoriansky et al. 2005; Galperin and Sukoriansky

2010). Their complex results obtained by rigorous theoret-

ical methods require a fractional polynomial fit to obtain a
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simple functional form of stability functions in the context

of MOST (see Sukoriansky 2008; Tastula et al. 2015). For

fitting the knowledge of constraints is very useful.

Summarizing, we have shown that all constraints (i) to

(v) are fulfilled by the GLGS functions (33) and (33) so

that they are established correctly.

12. Summary and conclusions

This work starts with a summary of prior investi-

gations by G2007a, of Grachev et al. (2015) and

Gryanik and Lüpkes (2018) concentrating on the use

of SHEBA data for the parameterization of near-

surface fluxes of heat and momentum. Based on these

publications a modification and extension of the G2007a

and Grachev et al. (2015) formulation of the MOST sta-

bility functions is proposed. This results in corresponding

parameterizations of transfer coefficients for momentum

and heat. The most important results can be summarized

as follows:

1) The newly derived stability functions (GLGS) have

the same accuracy with respect to data as the original

stability functions by G2007a, but their functional

form is simpler, so that they are well suited for a

practical application in weather and climate models.

2) The new functions are extended to account for their

dependence on the neutral-limit turbulent Prandtl

number Pr0, the effect of which was not included

in the original formulation. As was shown later by

Sorbjan and Grachev (2010) Pr0 can have a signifi-

cant impact on momentum and heat transfer.

3) For the adjustment of the new functions to measure-

ments we followed a new strategy. Namely, free

constants were chosen to represent both the ob-

served flux–nondimensional gradient relationship,

the z–Rib relationship and the stability dependence

of transfer coefficients for heat and momentum

simultaneously.

4) It is shown that the GLGS functions are slightly superior

to the G2007a functions with respect to the representa-

tion of the stability parameter–bulk Richardson number

relationship, so also to the corresponding transfer coef-

ficients for momentum and heat.

5) The applicability of the modified and extended GLGS

stability functions is proven for all values of the stability

parameter z using a method proposed by Sharan and

Kumar (2010).

6) Using the GLGS functions new noniterative bulk

parameterizations of the transfer coefficients of mo-

mentum and heat are obtained following an approach

ofGryanik andLüpkes (2018). The transfer coefficients
are formulated as functions of the bulk Richardson

number Rib, of the neutral-limit turbulent Prandtl

number Pr0 and of the nondimensional roughness pa-

rameters for momentum «m 5 z/z0 and heat «t 5 z/zt.

7) By comparison with SHEBA data it is shown that

traditional parameterizations underestimate or over-

estimate the transfer coefficients for large Rib de-

pending on the prescribed value of Pr0. The new

transfer coefficients agree better with SHEBA data

for strong stability (Rib . 0.1) than previous param-

eterizations and they agree well with those based on

the Businger–Dyer functions in the range Rib # 0.1.

8) It is shown that roughness has a significant effect on

the stability dependence of the transfer coefficients

when the new stability functions are used. This

confirms a result of Gryanik and Lüpkes (2018)

based on the G2007a functions.

9) Finally, for the practical application in weather and

climate models we proposed a hierarchy of the new

noniterative parameterizations of different levels of

complexity.

Summarizing, we state that the new noniterative

surface-layer scheme is superior to other schemes

describing the turbulent mixing in polar regions and

probably everywhere on Earth, so that we recom-

mend it for practical use. We think that biases in

the results of climate models during stable stratifi-

cation should not be avoided by enhancing the effi-

ciency of turbulent mixing. Other mechanisms, e.g.,

of ice/snow–atmosphere interaction can be respon-

sible for such biases.

We recommend modelers to test the new scheme in

weather prediction and climate models, where it can be

easily implemented. Although, the new parameteriza-

tions are proposed for the calculation of turbulent

surface-layer fluxes over sea ice covered polar regions

during neutral and stable stratification (for a range of pa-

rameters that is comparable with SHEBA data), in prin-

ciple, they can be used everywhere inmodels whereMOST

stability functions can be applied [see discussion by

Gryanik and Lüpkes (2018) and by Srivastava et al. (2020)].
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APPENDIX A

List of Stability Functions fk and Stability
Correction Functions ck

Below, we list the most often used stability functions

and stability correction functions in addition to those

of Businger–Dyer and G2007a. These are the functions of

Holtslag and De Bruin (1988), Beljaars and Holtslag

(1991), Chenge and Brutsaert (2005), and Sukoriansky

(2008), which we write in their traditional forms and

mention also their region of applicability. We remind the

reader that the stability functions of Businger–Dyer have

originally been adjusted to the range 0 , z , 1.

The stability functions of Holtslag and De Bruin

(1988) assume the Rayleigh analogy between momen-

tum and heat, which means that fm(z) 5 fh(z). The

functions are given as

f
m
(z)5f

h
(z)5 11 az1 bz(11 c2 dz) exp(2dz),

0# z, 10. (A1)

The corresponding stability correction functions read as

c
m
(z)5c

h
(z)52az2b



z2

c

d

�
exp(2dz)2

bc

d
,

0# z, 10, (A2)

with the four constants a5 0.7, b5 0.75, c5 5, and d5
0.35 for both cm(z) and ch(z).

Beljaars andHoltslag (1991) proposed for momentum

the stability function (A2) of Holtslag and De Bruin

(1988), but the new function for heat is given as

f
h
(z)5 11 az

�
11

2a

3
z

�
1 bz(11 c2 dz) exp(2dz),

0# z, 10, (A3)

c
h
(z)52

�
11

2a

3
z

�3/2

1 12 b


z2

c

d

�
exp(2dz)2

bc

d
,

0# z, 10, (A4)

with the same four constants a5 1, b5 0.667, c5 5, and

d 5 0.35 for both cm(z) and ch(z).

The functions of Chenge and Brutsaert (2005) are

defined as

f
k
(z)5 11 a

k

z1 zbk(11 zbk)(12bk)/bk

11 (11 zbk)1/bk
, 0# z, 5 (A5)

and

c
k
(z)52a

k
ln[z1 (11 zbk)1/bk ], 0# z, 5, (A6)

where k 5 [m, h]. Here am 5 6.1 and bm 5 2.5 for the

momentum stability function (k 5 m) and ah 5 5.3 and

bh 5 1.1 for the heat stability function (k 5 h).

Sukoriansky (2008) established the stability functions

f
m
5 11 2:25z2 0:4z2, 0# z, 2:81 (A7)

and

f
h
5 0:7[11 2z2 0:7z(z2 1/2)4], 0# z, 1:64: (A8)

The corresponding stability correction functions cm and

ch are

c
m
52(2:25z2 0:2z2), 0# z, 2:81 (A9)

and

c
h
520:7f2z1 0:14[(z2 1/2)5 1 (1/2)5]g ,
0# z, 1:64:

(A10)

Here, a mispresentation of functions (A9) and (A10) by

Sukoriansky (2008) is corrected. All corrections have been

accepted by S. Sukoriansky (2017, private communication).

In contrast to empirically based functions the func-

tions of Sukoriansky (2008) do not have free parame-

ters. All coefficients given in Eqs. (A7) and (A8) have

been derived rigorously under several well established

assumptions (see Sukoriansky and Galperin 2013, and

references therein).

APPENDIX B

Dependence of Stability Functions on Pr0

In this appendix we clarify some issues related with

the definition of the stability function fh and stability

correction function ch and their dependences on the

neutral-limit turbulent Prandtl number Pr0.

The Prandtl number Pr in general and its neutral

limit in particular represent important characteristics of

turbulent flows. It is a measure of the relative importance
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of mechanical and thermal mixing. Physically, the as-

sumption Pr 6¼ 1 originates from the conceptual differ-

ences between length and time scales of dissipation/

mixing for momentum and heat.

Although observable physical characteristics of the

surface layer are invariant with respect to any definition

of the dependence on Pr0, the functional forms of the

MOST equations and stability functions depend on this

definition. Establishing an empirical value of Pr0 depends

not only on an agreement on the functional form of the

stability functions fm and fh in the limit of vanishing

stratification, but—as becomes clear, e.g., from Eq. (B1)

below—also on the used value of the von Kármán constant

and on the definition of the Obukhov length L. Several

researchers prefer not to use Pr0 at all and use the von

Kármán constant for temperature kt instead (see, e.g.,

Zilitinkevich et al. 2002; Zilitinkevich andEsau 2007). Then

the constant kt is introduced similar to the von Kármán
constant k as a matter of convenience to ensure fh(0)5 1.

In this case Pr0 is defined as Pr0 5 k/kt. Zilitinkevich et al.

(2002) used, e.g., k 5 0.4 and kt 5 0.42 so that Pr0 5 0.95.

In the main text of our work we use the definition (1)

for the Obukhov length following Monin and Yaglom

(1971) with k 5 0.4 as in Högström (1988) and with

the multiplicative formulation of fh where Pr0 occurs

as a factor. The normalization conditions are given by

Eqs. (6) and (7). This follows the traditional line ac-

cepted by the modeling community.

Another possibility, which is often used for the pro-

cessing of measurements (Andreas 1987; Foken 2017) is

to use Eq. (4) for momentum with the normalization (6)

together with

kz

Pr
0
u*

dQ

dz
5f

h
(z) , (B1)

with the normalization

f
h
(0)5 1: (B2)

In this case, for self-consistency, Eqs. (11) must be

replaced by

c
k
(z)5

ðz
0

12f
k
(z0)

z0
dz0, f

k
(z)5 12 z

dc
k

dz
, k5 [m, h].

(B3)

The governing MOST equation reads then

cRi
b
5

(12 1/«
m
)2

12 1/«
t

z
ln«

t
2 [c

h
(z)1c

h
(z/«

t
)]

[ln«
m
2c

m
(z)1c

m
(z/«

m
)]2

,

cRi
b
5

Ri
b

Pr
0

. (B4)

If an alternative definition is preferred it is straightfor-

ward to reformulate our results in terms of this definition.

For example, Businger et al. (1971) formulated the log-

linear stability function for heat as fh(z) 5 0.95 1 7.8z

(given here in the form corrected by Högström (1988) to

the use of k 5 0.4), or, in general, as

f
h
(z)5Pr

0
1 a0hz , (B5)

where Pr0 5 0.95 and am 5 7.8. It is thus an additive

formulation for the inclusion of Pr0, which, in contrast

to our formulation above, does not include the effect of

Pr0 in the stability correction term. It is obvious that

after introducing ahPr0 5 a0h a multiplicative formula-

tion follows, which reads fh(z) 5 0.95(1 1 7.8/0.95z).

Very often a0h from (B5) is used in the framework of

Eqs. (13) without a clear statement that a correction

was already included.

We stress that one must clearly distinguish between

the different formulations of equations concerning

Pr0. They are not interchangeable, and mixing of them

can lead to erroneous results, e.g., to a dependence of

ch on Pr0 in the limit z / 0. Recently, such pseu-

dostability correction functions were introduced for

stable conditions by Sharan et al. (2003), Sharan and

Aditi (2009), and Sharan and Kumar (2010). It is in

contradiction with the traditional definition [see Eq. (12)].

Finally, we note that one must also be careful with

the formulation of bulk formulae for the heat flux. For

example, Louis (1979) and Pithan et al. (2015) use

Eq. (16) as

H
f
5 (1/Pr

0
)c

p
C

h
jU(z)j[Q

y
(z)2Q

0
] . (B6)

In this case Pr0 would have to be skipped in Eq. (18).

APPENDIX C

Applicability of the GLGS Functions

According to Sharan and Kumar (2010) stability

functions are applicable, if the inequalities (66) hold for

all values of z in the range 0 # z # ‘. Combining

Eqs. (17) with Eqs. (18), (19), and (20), the inequalities

(66) can be easily reformulated in terms of stability

correction functions as

Y
m
Y 0m $ 0, Y 0mYh

1Y
m
Y 0h $ 0, (C1)

where, by definition, Yk(z) 5 ln«k 2 ck(z) 1 ck(z/«k)

with k5 [m, h]. Equation (C1)must be valid in the range

0# z# ‘ for all values of the given parameters «k. Here

the prime means a partial derivative in z. Using the

GLGS functions (34) and (35) we obtain
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Y
m
5 ln«

m
1 3

a
m

b
m

[(11 b
m
z)1/3 2 (11 b

m
z/«

m
)1/3] , (C2)

Y
h
5 ln«

t
1Pr

0

a
h

b
h

[log(11 b
h
z)2 log(11 b

h
z/«

t
)] , (C3)

and

Y 0m 5 a
m
[(11 b

m
z)22/3 2 (11 b

m
z/«

m
)22/3) , (C4)

Y 0h 5Pr
0
a
h
[(11 b

h
z)21 2 (11 b

h
z/«

t
)21) . (C5)

Since both «m . 1 and «t . 1 the functions Ym and Yh as

well as Y 0m and Y 0h are always larger than 0, so that

conditions (C1) are fulfilled and the transfer coefficients

are decreasing functions in the whole range of z . 0.

To summarize, we have proven that the GLGS func-

tions are in agreement with constraint (66). Therefore,

they are applicable for all values of z.

APPENDIX D

Sensitivity of the GLGS Functions on
the Choice of Parameters

A first impression of the sensitivity of the GLGS

functions on the parameters am, bm, ah, bh, and Pr0 can

be obtained by Fig. D1 showing the fm and fh functions

obtained when all parameter values are varied by630%

relative to their optimal values given by Eq. (38). This

choice of variation is in line with Webb (1970) and

Högström (1996) who estimated the standard deviation

for am and ah as 30%. Figure D1 shows that the differ-

ences between curves for a different choice of parame-

ters in the given limits are small compared with the

scatter of the SHEBA data around the theoretical

curves. This allows us some freedom for the choice of

parameters.

With respect tofh amodification of Pr0 has the largest

effect. For z , 0.08 the value of Pr0 is by far the most

important value for a good agreement with observa-

tions. As will be shown below Pr0 affects also strongly

the z(Rib) relationship in this stability range. However,

the first tests have been carried out without a modifi-

cation of the originally chosen value Pr0 5 0.98.

We conclude from Fig. D1 also that the sensitivity on

am and bm and on ah bh depends on the range of con-

sidered stability. It is obvious that for z , 0.1 the sen-

sitivity is small compared with the sensitivity in the

range z . 0.1. Sorbjan (2017) optimized the agreement

of the fm and fh functions with SHEBA data for z, 0.6

by using am 5 4.7 while G2007a proposed am 5 5.0 (and

ah 5 5.0), which formed the reason for our choice of am
and ah in the set of constants (38). This value is also in

the range of the finally suggested values (am between

4.3 and 6.0) by Högström (1988, 1996). However, it is

also obvious that especially in the near-neutral range

(z , 0.02) values of constants can vary a lot without a

large effect. This motivated us to test also other values of

am than the optimal one to obtain perhaps an improved

agreement with respect to the z(Rib) relation and to

fm, fh and Cd, Ch.

Due to the above findings we tested a combination

of constants assuming am 5 7.0, which—as we show

below—improves slightly the agreement with respect

to fm, fh for 0.05 , Rib , 0.2 and for Cd and Ch in the

range 0.1,Rib. The value 7.0 for am forms an upper limit

for a reasonable choice with respect to fm since a larger

value would lead to larger differences (15%) to the

SHEBA data especially in the near-neutral range (Rib ,
0.05) (not shown). For the choice am5 7.0 and Pr05 0.98

we found then the optimal set of constants

FIG. D1. Stability functions fm and fh as a function of z with

(top) linear vertical axes and (bottom) logarithmic axes. Blue solid

lines refer to the G2007a functions, while the red solid lines are the

GLGS functions (32) and (33) with the optimal parameter values

(38). Dashed curves represent also the GLGS functions, but with

parameters am and ah (red) and bm and bh (green) as well as Pr

(black) varied by 630% relative to their values (38). The pink

dashed curves are results of the GLGS functions using the pa-

rameter values am 5 5.0, ah 5 4.3, bm 5 0.603, bh 5 0.9, and Pr0 5
1.0. Individual 1-h averaged SHEBA data based on median fluxes

for five levels are shown as gray symbols.
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Pr
0
5 0:98, a

m
5 7:0, a

h
5 5:0, b

m
5 0:67, b

h
5 0:4:

(D1)

The corresponding values of g and za are 2.63 and

5.1. Results for fm and fh obtained with (D1) are

shown inFig.D2. The comparisonwith the corresponding

Fig. 3 obtained with the optimal constants (38) shows

only small differences.Moderate differences are visible

for the z(Rib) relationship (cf. Fig. 4 with Fig. D3).

Namely, in the range Rib’ 0.1–0.15 the curves based on

Eq. (D1) agree slightly better with the observations than

the results based on (38). An improvement becomes

clearer by considering the fm and fh functions as well as

Cd and Ch, which represent the most important quantity

with respect to modeling since values of transfer coef-

ficients determine the turbulent fluxes. Figures D4 and

D5 show these functions obtained with Eqs. (D1) and

(38). Differences between the results occur in the range

0.01,Rib, 0.2while outsideof this range there are almost

no differences. For 0.01, Rib , 0.035 the set of constants

(D1) has slight advantages but a larger advantage for

0.035 , Rib , 0.2. There is especially a better agreement

with the SHEBA data measured at 8.9m height, which

is closest to 10m height, so to the level, which is mostly

considered as a reference for values of transfer coefficients.

One might argue that results based on the assumption

am 5 ah 5 5.0 could perhaps be further improved

using other values for bm and bh than those proposed in

Eq. (38). However, this leads to drawbacks as shown in

Fig. D4 exemplarily for a variation of bm.

Results are added for two further sets of parameter

values. The first one is chosen as an example proving

that an optimal agreement only with respect to the

z(Rib) relationship is not sufficient. This is interesting

especially after we have shown already that vice versa

an optimal fit of the f functions to the corresponding

SHEBA data resulted in some differences with respect

to the measured and modeled transfer coefficients. An

optimal agreement solely with respect to the z(Rib) re-

lationship is obtained with the parameter values

Pr
0
5 1:4, a

m
5 7:0, b

m
5 1:6, a

h
5 0:3,

b
h
5 13 1025 . (D2)

Using these values, the z(Rib) relationship is perfectly

approximated in the whole range of stability (Fig. D3).

However, as shown in Fig. D2 the corresponding fh

functions (especially their curvature) disagree with the

measurements in the range z . 1 and this leads again to

large differences to the SHEBA measurements espe-

cially for the transfer coefficients (not shown here).

FIG. D2. As in Fig. 3, but red dashed lines represent the GLGS

functions (a)–(d) using constants (D2) am5 7.0, bm5 1.6, ah 5 0.3,

bh5 13 1025, and Pr05 1.4 and (e)–(h) using constants (D1) am5
7.0, bm 5 0.67, ah 5 5.0, bh 5 0.4, and Pr0 5 0.98.

FIG. D3. As in Fig. 4, but results are based on the GLGS func-

tions (c),(d) using constants (D1) am5 7.0, bm5 0.67, ah5 5.0, bh5
0.4, Pr0 5 0.98 and (top) using constants (D2) am 5 7.0, bm 5 1.6,

ah 5 0.3, bh 5 1 3 1025, and Pr0 5 1.4.
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In general, we found that the z(Rib) relation in the

range Rib , 0.05 can be improved when Pr0 attains

values larger than 1. However, such values are not in

agreement with the finding of other authors so that we

do not recommend such values at the present stage of

research.

There is also a set of parameter values, namely,

Pr
0
5 1:0, a

m
5 5:0, b

m
5 0:603, a

h
5 4:3, b

h
5 0:9,

(D3)

for which the G2007a f functions are ideally approx-

imated by the GLGS functions with very small dif-

ferences only (Fig. D1). Corresponding results for the

z(Rib) relationship and for the transfer coefficients

can almost not be distinguished from those based on

the original G2007a functions.

FIG. D4. Plots of fm and fh obtained from SHEBA (symbols

with color coding as in Fig. 3) and (iterative) results based on the

GLGS functions using the constants (D1) (red solid line). The

blue lines represent results when am 5 5.0 and ah 5 5.0 are

prescribed and bm and bh are varied [blue solid line: best fit with

parameters (38), upper dashed blue line: bm 5 0.5 and bh 5 0.4;

lower dashed blue line: bm 5 0.1 and bh 5 0.4]. In all cases

a 5 0.7.

FIG. D5. Transfer coefficients Cd and Ch at 10 m height as a

function of Rib. Solid lines: based on the GLGS functions

(a),(b) with the set of constants (38) (am 5 5.0, bm 5 0.3, ah 5
5.0, bh 5 0.4, Pr0 5 0.98) and (c),(d) with (D1). Three lower-

most dashed lines are based on the Businger–Dyer functions

and three uppermost dashed lines are based on Louis (1979).

Dotted lines are based on G2007a. Colors refer to different

values of «m as in Fig. 10. Black symbols represent SHEBA

measurements at different heights.
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